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gemuPG - A Generative Music Poly* Grid

Abstract

This thesis proposes the term poly* for inherently polyrhythmic, polymetric, microtonal
music software and lists current available software approaches for this category. A new
music environment titled gemuPG was developed to fit this description and its features
and technical implementation outlined. Possible further improvements are reviewed and
musical usability is analysed based on select examples, showcasing its capabilities as
inherently poly* music software, but also laying out the software’s shortcomings.

Zusammenfassung

Diese Abschlussarbeit schlägt den Begriff poly* für Musiksoftware mit zugrunde liegen-
den polyrhythmischen, polymetrischen und mikrotonalen Herangehensweisen vor und
listet aktuell verfügbare Softwareansätze dieser Kategorie auf. Eine neue Musikumge-
bung namens gemuPG wurde entwickelt, um dieser Beschreibung zu entsprechen. Ihre
Funktionen, sowie deren technische Umsetzung, werden behandelt. Ein Überblick über
mögliche weitere Verbesserungen wird dargeboten und die musikalische Nutzbarkeit wird
anhand ausgewählter Beispiele analysiert, wobei einerseits die Fähigkeiten als poly*-
fokussierte Musiksoftware, aber auch die Mängel des Programms aufgezeigt werden.
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1 Introduction

Music notation software like MuseScore naturally adheres to traditional western music
notation. Similarly, digital audio workstations (DAWs) which have grown from recording
and mixing tools to complete compositional environments, inherit the same limitations.
A DAW’s piano roll holds the same notes as a music sheet’s staff lines, all instruments
or tracks share the same measure length at any time and subdivisions beyond multiples
of two are a specialty, as made evident by their notation. These constraints are often
circumvented, but still form the foundation of most tools. This thesis showcases gemuPG,
a new music environment with the aspiration to eliminate these constraints in order to
allow new approaches to musical exploration and composition.

Chapter 2 first examines existing alternatives to conventional music creation and out-
lines the design philosophy of gemuPG. The following chapter presents implemented fea-
tures, but also covers valuable possible improvements to the software. After this, Chapter
5 deals with the technical aspects of implementations as well as current bugs. The last
chapter showcases example projects to improve comprehension of workflow and details
possible use cases for the software.

2 Poly* Music Software

Computers do not need to read sheet music. We can therefore decouple the process of
modern music-making from established standards. The following examples show select
approaches to integral poly-metric, poly-rhythmic and microtonal audio composition. I
suggest poly* (pronounced ’poly asterisk’, or simply ’poly’) as an umbrella term, which
does not suit the microtonal aspect semantically but encapsulates the concept adequately.
Furthermore, I picked the term generative to describe procedural music as popularised
by Brian Eno: ”Generative music [...] specifies a set of rules and then lets them make
the thing.” [1] Many of the following examples are often referred to as ’nonlinear’ music
software. Although a lot of nonlinear software can also be considered poly* and vice
versa, the term poly* differentiates itself by focussing on forms of more granular pitch
and time subdivision rather than breaking away from linear structural norms.

2.1 Existing Software

2.1.1 Skeuomorphism

Skeuomorphism describes the software emulation of physical interfaces. This design phi-
losophy aids in bridging the gap between analog and digital interaction and is very promi-
nent in audio software [2]. The most notable group of poly* audio software here is virtual
modular synthesis racks like VCV Rack [3]. These emulations are flexible in complexity
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and friendly to musicians coming from their hardware equivalents, but are often met by
initial difficulties for newcomers and do not leverage software interfaces effectively.

2.1.2 Node-Based Approaches

Node-based audio software, such as Pure Data [4] or Bitwig’s The Grid [5], could be
considered the real digital derivative of modular synthesisers, offering adaptive interfaces
and more suitable controls for computer interaction. Nodes work on different abstraction
layers. Pure Data offers many low level audio manipulation functions, while The Grid

focuses on higher level abstractions that ease the initial usage complexity. Thus, node-
based tools show an interplay of granularity of control and difficulty of use.

2.1.3 Audio Programming Languages

This category includes SuperCollider [6], ChucK [7] and their older sibling Csound [8].
They are programming languages with the goal of bringing the flexibility of coding to
musicianship. These tools are primarily catered towards a certain group of users with
prior programming experience wanting to make creative use of their existing skills. Once
again, these tools need in-depth preparation to receive satisfying results.

2.1.4 Graphical Sound

Another notable, albeit small, group of software takes the approach of drawn sound, tak-
ing inspiration from the ANS Synthesiser and the works of Arseny Avraamov. Software
in this field mostly makes use of the spectrogram, allowing users to draw freely within the
audible frequency range [9]. While this allows for unrestricted non-discretised placement
of notes, current implementations are limited in scope, merely allowing short audio snip-
pets to be created, without multitrack capabilities. Programs like Photosounder [10] or
Virtual ANS [11] are therefore more to be seen as tools or instruments, rather than modern
environments for creating unconstrained music.

2.1.5 Other Approaches

Various other approaches have emerged over the years. Notably Electroplankton, a 2005
Nintendo DS game featuring various different sequencing options, allowing for genuinely
poly* approaches to music [12]. Midinous, on the other hand, is a sequencer where you
connect note blocks on a 2D grid [13]. The distances to one another determine the de-
lay and additional randomisation options and conditional statements allow for complex
generative poly* music creation. Lastly, I would like to mention Blockhead; a grid-less
sample-focused DAW with advanced pitch manipulation and poly-metric and -rhythmic
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functionality baked in. Its innovative twist on the traditional DAW layout allows for quick
entry and vast sonic experimentation [14].

2.2 A New Environment: gemuPG

2.2.1 The Goal

I desired to create an accessible music environment that is generative and poly* at its core.
Additionally it should not mimic physical hardware but instead offer a software-centric
interface, that is easy to achieve results with. An approach differing from the ones pre-
viously mentioned was sought after. Following some initial brainstorming I landed on
the concept of transforming the linearity of tracks in a DAW, which could be considered
one-dimensional, into two-dimensional areas; an instrument track usually consists of one
or more sound generators (often called virtual instruments) and optional effects. This in-
strument track needs to be passed a note sequence to output sound. Thus, we can establish
the distinction between callers, which are the notes of the sequence, and callee, which is
the instrument consisting of generators and effects.

2.2.2 Theory of Operation

This thought process lead me to the concept of a grid-based system, where areas can be
defined in various shapes and sizes by connecting several area fields. Within those areas
lie our callees. Generator and effect blocks can be placed here to build a virtual instru-
ment. Conversely, the callers, are to be placed around the sides of the areas, which creates
a note sequence that loops at a length equivalent to the area’s circumference. This forms
the foundation of my software, which I named gemuPG. The name is an abbreviation of
’GEnerative MUsic Poly* Grid’, a self-explanatory name for the software.

Concept art is shown in Figure 1, which shows two areas with surrounding sequence
blocks, working as callees. The sequences are read out by stepping around the sides of
the areas in counter-clockwise direction at a preset tempo. If there is a sequencer block
attached to the current side, the virtual instrument within the area is played at the given
pitch(es). If there is no sequencer block however, the instrument is paused. The left
area’s virtual instrument consists of generator blocks (blue), an effect block (green) and
a modulator block (red), while the right one only holds one generator block and two
modulator blocks. Modulator blocks can affect settings of adjacent blocks based on fixed
waveforms or patterns, but also be influenced by the current sequence value.
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Figure 1: Concept art for gemuPG.

3 Features of gemuPG

When I first set out to create gemuPG I had envisioned a much larger scope. Unfor-
tunately, a lot of ideas had to be dropped - mostly due to time constraints, rather than
technical ones. Below you will find a quick rundown of features, separated into those
that made it into the final release and those that I considered to be valuable additions but
lacked the time to implement.

3.1 Implemented Features

3.1.1 The Grid

Naturally, for the implementation of most other aspects of the software, the grid needed to
be implemented first. I also added support for panning and zoom to simplify navigation.

3.1.2 User Interface and Shortcuts

Visualisations and toolbars were added, next to shortcuts, to improve usability. Keyboard
shortcuts boost interaction speed, allowing for quicker creative results. The toolbars, on
the other hand, enhance accessability by ensuring that interaction with the keyboard is not
mandatory.

7



Figure 2 shows an empty gemuPG project. The vertical toolbar on the left allows for
switching between the placement of areas, generator blocks and sequencer blocks. Areas
are grey, generators blue and sequencers yellow. In the left corner above, the current
block selection is shown. Moving on to the bottom of the screen we find another toolbar,
offering play/pause/stop functionality, as well as volume and tempo controls in beats per
minute (BPM), which default to 0.5 and 60.0 respectively. The view in the bottom right
shows the software’s audio output signal. Additionally, blocks and areas have their own
settings windows, which will be shown and explained along with their settings in their
respective subchapters. All windows show their block’s position in their title bar.

Figure 2: An empty gemuPG project.

3.1.3 Areas

As previously established, areas need to hold virtual instruments and be surrounded by
sequence blocks to output sound. Automatic merging and splitting needed to occur if
connecting areas were added or removed. Furthermore, beat subdivisions (supporting all
whole numbers from 1 to 32) were implemented, allowing for complex rhythmic experi-
mentation, as well as an area-wide amplitude setting to control the volume of all contained
generator blocks at once. To improve sound sculpting capabilities, settings for glissandi
between notes, as well as for attack and release times were added. These are controlled as
a percentage of note length. The window shown in Figure 3 displays the default settings
for areas. With a default global BPM of 60.0 and a subdivision of ’1/4’ we get a note
length of 0.25 s. If we consider the default attack and release values of 25%, this leads
to attack and release times of 250 ms · 25% = 62.5 ms. Hence, the amplitude reaches its
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maximum value 62.5 ms after the note begins playing and starts to be reduced 62.5 ms
before the next note starts. The glissando works in a similar fashion to the attack time,
starting at the beginning of a note and sliding down to the new frequency in a variable
percentage of the note length’s time.

Figure 3: The settings window of an area.

3.1.4 Generators

Moving on to the sound generators, I decided not to limit their placement to areas, but
instead also allow for global blocks that play a continuous note. These global blocks
only show options for setting the frequency, amplitude and waveform, as shown in Fig-
ure 4a. Frequency and waveform are set to be randomised upon placement. Genera-
tor blocks within areas, however, replace the fixed frequency setting with ’relative fre-
quency’ and ’frequency factor’ controls which affect the output frequency according to
fout = (fsequence + frelative) · factor. This enables additive synthesis using multiple
generator blocks within areas. The waveform selection supports basic waveforms, more
precisely: sine, square, triangle and saw waves. Moreover, sample loading with support
for WAV files of various formats was added. Selecting the ’sample’ option enables con-
trols for loading a file, as well as a toggle for selecting whether the sample should be
played once (’oneshot’) or looped (’repeat’). The previously mentioned randomisation
only chooses one of the preset basic waveforms however. Lastly, the loaded sample can
be tuned using the ’sample root frequency’ setting. Successive sequencer blocks that re-
sult in the same frequency can be used to let the sample play out instead of retriggering it,
if the sample’s length exceeds the note length. The current file name is also shown next to
the ’load sample’ button. The settings window for a generator block within an area, with
its waveform set to a sample named ’quack.wav’ is shown in Figure 4b.
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(a) A global sine generator block. (b) A sample generator block in an area.

Figure 4: The settings windows of generators blocks.

Quick readability of block settings was important to me, which is why rendering of
relevant information directly onto the blocks on the grid was implemented. The type of
waveform is shown in large, while frequency information is shown on top. Figure 5 shows
two generators blocks, as rendered on the grid. The left one holds a sample and is placed
in an area. It shows a frequency factor of 1.75 and a relative frequency of 6.75 Hz. The
right generator holds a square wave and is placed globally, showing an absolute frequency
of 220.0 Hz. The font used is Sono by Tyler Finck [15].

Figure 5: Display of generator blocks in the grid.

3.1.5 Sequencers

The sequencer blocks’ placement is limited to positions orthogonally adjacent to the outer
area positions. Additionally to this, automatic removal of sequencer blocks, when the sup-
porting area is removed, was implemented. The sequencer blocks come in four different
types:

• ’absolute frequency’
• ’relative frequency’
• ’note’
• ’interval’

Absolute and relative frequency sequencers are self-explanatory. The window for a se-
quencer block with the ’absolute frequency’ type selected shows a single slider for fre-
quency selection underneath the ’type’ drop-down menu, an example of which can be
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(a) An ’absolute frequency’ sequencer. (b) A ’note’ sequencer.

(c) An ’interval’ sequencer.

Figure 6: The settings windows of sequencer blocks.

seen in Figure 6a. Relative frequency blocks similarly show a single frequency slider,
albeit with different ranges to accommodate for negative frequency changes. Sequencer
blocks of type ’note’ allow for selecting notes from the conventional twelve-tone scale in
octaves 0 through 10. An example window for F#5 is shown in Figure 6b. The fourth
sequencing option is ’interval’, which offers two control sliders, as seen in Figure 6c. The
’octave subdivision’ input determines the amount of equal temperament frequency steps
per octave. The other input, named ’interval’, determines how many of these equal tem-
perament steps should be moved up or down. This equates to f = fprev · 2

interval
octave subdivision .

Importantly with relative sequencer blocks (as in ’relative frequency’ or ’interval’ se-
quencer blocks), the frequency changes were implemented in a way that the frequency
range wraps from 20 Hz to 20 kHz. This was added to better support sequences with
exclusive use of relative sequencer blocks.

The type and value(s) of the sequencer blocks are randomised within preset ranges
when first placed. Direct rendering of the sequencer blocks’ settings is also given, similar
to generator blocks. Figure 7 shows all available block types and their on-block render-
ings. The interval block is the currently active one, as signalised by its enlarged block
size. Sequencers are stepped in counter-clockwise direction for each side of an area. Be-
cause the sequence length is not equal to the amount of possible sequencer block positions
around an area but rather the amount of sides of the area shape, it causes sequencers placed
in a corner of an area to play twice and sequencers in the gap of a U-shaped area three
times. If a side is left empty it counts as a pause. Illustrations visualising the sequence
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order can be found in Chapter 4.2.

Figure 7: Randomised sequencer blocks of all available types.

3.1.6 Other Functionality

Saving and loading projects was implemented, a substantial addition for making the use
of gemuPG worthwhile. The project files are stored in JSON format with a ’.gemupg’ ex-
tension, which allows for direct manipulation of save files thanks to the format’s human-
readability. On a related note, project loading via launch parameters is supported, allow-
ing operating systems to set the project files to directly open with gemuPG. The play,
pause and stop functionality is another valuable addition. The stop button halts sequencer
progression and resets each area’s sequence to its initial position. The initial position is
the sequencer block left of the top-left-most area block, meaning the left-most area block
of the top-most row of the area. The last addition, which improved usability drastically,
was the ability to copy and paste blocks. This allows for very fast sequence programming
by copying sequencer types with specific settings.

3.2 Omitted Features

The first obvious omission from the project is the effect blocks mentioned in Chapter 2.2.
An earlier version, before rewriting the software from scratch, included some backend
support for this. They did not make it back into the thesis release version, because I failed
to find a satisfying translation for serial processing to the 2D space created by gemuPG.
Generator blocks did not pose a problem, since they do not need to adhere to an order,
seeing as they effectively run in parallel. In contrast, a way of sorting the order of effects
processing would need to be found for placed effect blocks. From left to right and top to
bottom did not seem intuitive enough given the otherwise more circular nature of signal
flow. If this hindrance were to be solved, however, it was conceived that various effects
would be available, which would affect their respective areas as a whole. Furthermore,
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lua scripting capabilities for effect blocks were considered to allow for easy expandability
of effect types.

Another feature that failed to make it into gemuPG but was previously mentioned and
seen in Figure 1 is modulator blocks. These were meant to modify variables of adja-
cent generator and effect blocks using different patterns or waveforms. Their frequency
could either be fixed or relative to the current sequencer block’s value. Additionally, a
modulator block’s variables could be controlled by another modulator block, allowing for
frequency or ring modulation. Modulator blocks would reinforce the two-dimensional de-
sign philosophy. Every modulator block could affect up to four adjacent blocks, in theory
allowing for complex synthesis structures.

The concept art also shows an instance of two sequencer blocks stacked on one an-
other (C4 and E4). These parallel sequencer blocks would allow for chord building, once
again advancing the possibilities of composition within the environment. The calculation
order for relative sequencer blocks would intuitively start from the side of the area, going
outwards.

With the aim of enhancing and actively supporting live playability of gemuPG, mute
groups were considered. I wanted to add the ability to toggle bypassing of certain areas
or blocks using the number keys, if previously mapped in their respective options. A
performer could effortlessly switch between various different poly* patterns or change
the underlying instruments with this.

Next, conditionals would allow generator or sequencer blocks to activate randomly or
by a set of rules. For example a generator block could be set to only play if the given
frequency is above a certain value. Additionally, they are meant to support sequence
modification, such as skipping a certain amount of sequencing steps if a requirement is
met or changing direction of the sequence. This addition would greatly improve possible
compositional complexity.

The dropped features I mentioned thus far would be the main additions I would make
to consider gemuPG complete. However, contemplation was given to other features as
well, such as relative BPM adjustments for areas, audio panning, more advanced ADSR
capabilities, sample loop markers and in-software audio recording for exporting, as well
as sample creation, to list a few. Audio plugin support for generators and effects would
also immensely broaden the software’s capabilities, due to the enormous amounts of soft-
ware found in this area. In reality, of course, there are nearly infinite ways of improving
creative software and I am but one person with a questionable understanding of time.
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4 gemuPG in Use

4.1 Controls

The controls for gemuPG were chosen to be intuitive. The number keys 1 through 3 select
the tool for placement, removal or editing. The numbers are mapped to areas, generators,
and sequencers respectively, which mimics the order of the left toolbar. The selected area
or block can be placed using the left mouse button, or removed using the right mouse
button. A block’s menu opens when it is left clicked, which allows for double clicking
an empty space to create and immediately edit a block. Camera movement is possible
through dragging the screen using the middle mouse button and additionally, for those on
touchpads or without mice with a third button, using the left mouse button while holding
down the Ctrl key. Zooming is achieved through the scroll wheel. Sliders in block menus
can be left clicked while holding the Ctrl key to enter values with the keyboard. Since I
noticed that block windows can accumulate quite quickly when making changes, the Q
and Escape keys were mapped to to closing all open windows. Ctrl + C and Ctrl + V are
used for copying and pasting blocks respectively and the D key can be used toggle the
audio output view. F11 toggles fullscreen mode. The conventional keyboard shortcuts for
saving and loading have also been assigned as seen in Table 1.

Shortcut Function
1 Select Area Blocks
2 Select Generator Blocks
3 Select Sequencer Blocks

Left Mouse Click Place Block
Left Mouse Click Edit Block

Right Mouse Click Remove Block
Middle Mouse Drag Pan Camera

Ctrl + Left Mouse Drag Pan Camera
Scroll Wheel Zoom Camera

Ctrl + C Copy Block
Ctrl + V Paste Block
Ctrl + S Save Project

Ctrl + Shift + S Save Project As...
Ctrl + O Open Project
Ctrl + N New Project (Warning: No Save Prompt!)

Q Close All Block Windows
Escape Close All Block Windows

D Toggle Audio Output View
F11 Fullscreen

Ctrl + Left Mouse Click on Sliders Enter Value via Keyboard

Table 1: Keyboard shortcuts and mouse controls for gemuPG.
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4.2 Examples

The following examples demonstrate the usage of gemuPG. All examples are available in
the project’s Git repository.

4.2.1 How Sequences Work

Figure 8: Example 01, showing an area with a visualisation of the sequencing order.

To further illustrate the sequencing order, I will now explain how the area shown
in Figure 8 plays out. The sequence starts at the ’note’ block that defines A#4 as its
pitch, which internally gets translated to a frequency of 466.24 Hz. This is followed by
a ’relative’ sequencer block playing twice because it is placed in a corner of the area and
thus being activated by two sides, changing the pitch to 422.31 Hz and 378.38 Hz. The
interval block on the bottom multiplies the frequency by 2

5
8 resulting in 583.54 Hz. Being

adjacent to three sides of the area, the next sequencer block is being played three times.
Please refer to Table 2 for the remaining frequency values. Following the three 1.0 / 8.0

interval increments are two pauses, as shown by a lack of sequencers. The remaining
five sides of the area are evaluated in the same fashion, after which the sequence repeats
from the start. This results in a repeating pattern of length 14, which triggers the generator
blocks within the area. The generators shown provide us with a square wave at a quarter of
the given frequency, a triangle wave without any relative changes to pitch, as well as a sine
wave with a frequency offset of −1.84 Hz and a multiplication factor of 2. The amplitudes
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of the generator blocks and the area settings cannot be interpreted from this screenshot,
but can be examined in this example’s project file in the gemuPG code repository.

n sequencer type value frequency note
1 note A#4 466.24 Hz A#4
2 relative −43.93 Hz 422.31 Hz G#4 + 29ct
3 relative −43.93 Hz 378.38 Hz F#4 + 39ct
4 interval 5.0 / 8.0 583.54 Hz D5 - 11ct
5 interval 1.0 / 8.0 636.35 Hz D#5 + 39ct
6 interval 1.0 / 8.0 693.95 Hz F5 - 11ct
7 interval 1.0 / 8.0 756.76 Hz F#5 + 39ct
8 - - pause -
9 - - pause -

10 relative −36.48 Hz 720.28 Hz F#5 - 47ct
11 relative −102.50 Hz 617.78 Hz D#5 - 12ct
12 - - pause -
13 interval 12.0 / 12.0 1235.56 Hz D#6 - 12ct
14 - - pause -

Table 2: Note sequence for example 01 with corresponding 12-tone scale note values.

4.2.2 Polymetric Composition and Shared Sequencer Blocks

Polymetric composition is natural and straightforward in gemuPG, since each area can
be thought of following its own time signature. If the circumference of one area is not
the multiple of another, a polymetre is formed. Take for example an interplay of 8

10 and 4
6

metres. This example’s convergence period, meaning the time it takes for the combined
pattern to repeat, is twelve quarter beats or two iterations of the 4

6 pattern. We can cre-
ate a 1x2 area, which has six sides with a default subdivision value of ’1/4’, and an area
with ten sides, with its subdivision changed to ’1/8’. For this example an L shape was
chosen. Figure 10 shows one possible realisation, which also makes use of shared se-
quencer blocks in the middle. Interestingly, the shared multi-block subsequence of one
area is always the reverse of the same subsequence of another area. The shown example
intentionally makes exclusive use of the twelve-tone scale to allow for easy transcription
to conventional staff notation, seen in Figure 9.

Square

Sine

       




   
Figure 9: A transcription of example 02.
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Figure 10: Example 02, showing the realisation of a polymetre.

4.2.3 Polyrhythmic Composition

Polyrhythmic composition is similarly easy to achieve using the area’s subdivision setting.
The example in Figure 12 shows a 4:5 (four over five) polyrhythm, realised by setting the
left area’s subdivision setting to ’1/4’ and the right one’s to ’1/5’. The combined pattern
repeats after four iterations of the left area, or five of the right one. The transcription is
shown in Figure 11.

Saw

Triangle

                 




 5 55 5

Figure 11: A transcription of example 03.
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Figure 12: Example 03, showing the realisation of a polyrhythm.

4.2.4 Generative Music

The previous examples covered different aspects of poly* music making. While poly-
metres of a sufficiently sized convergence period already approximate generative mu-
sic, I will now illustrate how gemuPG can also be used for other rudimentary generative
composition using the example shown in Figure 13. This project shows two areas, one
with exclusive use of interval sequencer blocks, the other only with sequencer blocks
of type ’relative frequency’. Considering the frequency value wrap within a range of
[20 Hz, 20 kHz] these are two infinite sequences with different starting notes for each it-
eration. I will start with the left sequence which, excluding pauses, has nine sequencing
steps, each changing the pitch by a factor of 2

x
16 :

f = flast ·
9∏

i=1

2
xi
16 = flast · 2

∑9
i=1 xi
16 = flast · 2

−6
16

Each iteration of the left area causes a pitch shift by a factor of 2
−6
16 and therefore trans-

poses the next iteration down six steps on a 16-tone equal temperament scale.
In contrast, the right area uses relative frequencies, the pitch difference after each

iteration thus equates to:

f − flast = +200.00 Hz + 25.00 Hz − 2 · 300.00 Hz − 50.00 Hz = −425.00 Hz

Naturally, using interval sequencers results in exponential pitch changes, while the rela-
tive frequency sequencers work linearly, yielding dissimilar outcomes.
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Figure 13: Example 04, showing generative music.

4.3 Instrumental Idioms

Instrumental idioms have been described by David Huron and Jonathan Berec as follows:
”In the case of instrumental idiomaticism, we noted that idiomaticism might be defined
as the degree to which a given means of achieving a certain musical goal is significantly
easier than other hypothetical means” [16]. This leads to the question of what idiomatic
opportunities and limitations gemuPG provides. I have therefore summarised the easy
to achieve musical structures into Chapter 4.3.1 and the difficult ones into Chapter 4.3.2.
I chose the tiles Affordances and Constraints loosely based on their definitions in Don
Norman’s The Design of Everyday Things [17].

4.3.1 Affordances

Through testing the software during development several patterns became evident. As
intended, polymetric music was typically created unless the areas’ circumferences were
intentionally matched. The added complexity of different shapes of the same area posi-
tion count naturally resulting in different circumferences supports this further. Contrary
to this, The polyrhythmic aspect, being ’hidden’ in a menu, is perceived as an option
rather than a natural occurrence. Furthermore, the randomisation of blocks encourages
quick experimentation and a ’seeing what sticks’ approach. This, in combination with the
occasional unpredictability of results from area shapes - regarding sequence length and
sequencer block repetition in corners - can lead to happy accidents, which arguably set the
cornerstone of gemuPG. The looping structure of gemuPG leads to a strong tendency for
repetitive music, even if not fully repeating due to the underlying polymetric design. This
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lends itself to composition of minimal music, sound scapes and similar forms without
strong musical motion. Alternatively, gemuPG can also be used as an instrument, rather
than a compositional tool, where the output is recorded and combined with other tools in
a DAW.

4.3.2 Constraints

The central role of loops limits support for any advanced musical forms. Although suffi-
ciently large areas that allow for these forms could be declared, it would directly oppose
gemuPG’s usability, making traditional music software the better alternative. In practice
I often resorted to heavy use of note and interval sequencer blocks, a tendency probably
influenced by traditional notation. Considerations were therefore made to revise the 12-
tone note selection to conform to gemuPG’s poly* design philosophy: the octave selection
would remain, but the note selection setting would be replaced by options to choose the
octave subdivision and the step of that octave.

Another, albeit smaller, constraint is the fact that adding or removing area blocks
always causes a change of area circumference of ±2 or 0. In turn, this infers the need to
double the sequence for uneven sequence lengths.

Unfortunately, in part due to the lack of conditionals and modulator blocks, the gen-
erative music aspect of gemuPG falls short. Unless manually interacted with, iterations
vary by transposition at most, strongly limiting complexity of projects.

5 Technical Implementation

5.1 Language, Framework and Toolchain

As for any software project the programming language first needed to be chosen. I opted
for C++ due to familiarity with the language, as well as its widespread use in the field
of audio programming. Next, I needed a framework to allow cross-platform interaction
with input, audio and graphics hardware. Here, my choice was split between JUCE [18],
a widely used framework that is explicitly made for audio programming, or Simple Di-

rectMedia Layer (SDL) [19], an even more widespread but also lower level framework
than JUCE. Both of these frameworks feature an open source license. Ultimately I set-
tled on using SDL, because I valued its wider usability higher than JUCE’s suitability for
this use case. Version 3 of SDL (SDL3) was available as a stable preview when I started
this project and made its official stable release with version 3.2.0 a couple of weeks be-
fore writing this. SDL3 was used for gemuPG as the new version added significant im-
provements to its audio system. Additionally, I used the SDL external SDL ttf [20] for
rendering the on-block information and the user interface library Dear ImGui [21] for
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implementing the toolbars and settings windows. Lastly, Niels Lohmann’s single-header
JSON library was used for implementing the save and load functionality. [22]

I programmed and tested my software in Windows 11 using GCC 14.2.0 via MSYS2’s
UCRT64 environment and CMake 3.31.5. The minimum C++ standard library version
has been set to C++20, due to active use of std::format. This also makes GCC
version 13 the minimum requirement for compilation. The minimum CMake version has
been set to 3.25. The software has also been compiled and tested under Ubuntu 24.04.2
LTS. Compilation using MSVC 17.12 was also successful but the resulting executable
was prone to crashing. Compilation with clang is untested. The source code of gemuPG
is available under the GNU AGPLv3 license in the Git repository from the Institute of

Electronic Music and Acoustics: https://git.iem.at/aronpetritz/gemupg/-/releases/Thesis

5.2 Software Structure

SDL3 added so-called ’main callbacks’ splitting functionality into the following main
functions:

• SDL_AppInit is called at the start of the program
• SDL_AppQuit is called upon closing the program
• SDL_AppEvent is called asynchronously for each registered event
• SDL_AppIterate is the main update loop

SDL_AppInit and SDL_AppQuit were naturally used for initialisation and memory
clean-up. Here I also initialised an AudioEngine singleton class among other things,
which in turn starts the audio stream and grabs data from the assigned audio callback
function. I will detail this in the Chapter 5.2.3.

The event callback forwards most events to an Input singleton class, where inter-
action with Dear ImGui windows and other classes is handled. Controls for panning and
zooming are sent to the Camera singleton for example, which is later accessed by the
rendering code.

The core software loop SDL_AppIterate separates code for sequence stepping and
updating the screen using a Clock singleton, as shown in the code snippet below.

SDL_AppResult SDL_AppIterate(void *appstate) {

if (Clock::getInstance().shouldStep())

Interface::getInstance().getGrid().stepSequence();

if (Clock::getInstance().shouldDraw())

Interface::getInstance().draw();

return SDL_APP_CONTINUE;

}
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Figure 14: A rough illustration of gemuPG’s class relationships.

This separation should prioritise sequence stepping to graphics rendering in the hopes of
maintaining tempo stability.

Figure 14 illustrates the class relationships of objects within the grid. It shows that
each Area object can hold several BlockGenerator objects, but each BlockGenerator
object can only be held by one Area. Additionally, the Grid object can also directly
store BlockGenerators. In contrast, BlockSequencer objects can be referenced
by multiple areas, as illustrated by the bottom BlockSequencer.

5.2.1 Area Merging and Splitting

Areas need to automatically split and merge. Hence, when an area is placed, it first
checks all adjacent positions for other areas. The newly placed area is then added to the
first discovered area. This area is marked and all positions and blocks held by further
areas are moved over to the marked area, after which the other areas are removed from
the grid. If there are no adjacent areas, a new one is created. Conversely, splitting areas
was implemented via a flood fill algorithm that checks which fields of an area are still
connected after a position is removed.
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5.2.2 Sequencer Stepping

Areas store pointers to sequencer blocks and pauses are marked by nullptr. Sequences
need to be sorted and updated when the area shape changes or sequencer blocks are added
or removed. Modifying an area in these ways therefore calls an updateSequence()
function, containing the following instructions:

1. Move to the starting position and set direction to ’DOWN’.
2. Add reference to BlockSequencer or alternatively nullptr if there is no se-

quencer block.
3. Set the next sequence position:

(a) If no area exists at the next diagonal inwards position, move to that position
and rotate the direction by 90◦.

(b) Otherwise, if no area exists at the position straight ahead, move to that posi-
tion.

(c) If both positions are occupied, rotate the direction by −90◦.
4. Repeat steps 2 and 3 until starting position is reached again.
Step 3, determination of the next sequence position is shown in Figures 15a, 15b

and 15c respectively. Each stepSequence() call, areas acquire their next sequence
block’s frequency and apply it to all generator blocks within. If the next sequence position
shows no sequencer block, the frequency is set to 0.0 Hz.

(a) Diagonal movement. (b) Straight movement. (c) Rotation only.

Figure 15: Determining the next sequence position.

5.2.3 Audio Engine

Audio processing is handled via the AudioEngine singleton class, which upon starting
gemuPG initialises the SDL audio backend and starts the main output stream. It also ini-
tialises wavetables for the basic waveforms using fourier addition with different amounts
of harmonics to minimise aliasing. The wavetables are stored in the wavetables_map,
which contains std::pair<WAVE_FORMS, int>s as its keys, where the int value
sets the amount of harmonics, and std::array<float, WAVE_SIZE>s as their val-
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ues. WAVE_FORMS is an enum holding the selectable waveforms and WAVE_SIZE is
a constexpr variable defining the size of a wavetable. This pre-initialisation is im-
portant for quick writing to the audio stream. The main audio callback function calls
SDL_GetAudioStreamData(...) on all generator blocks, which pulls samples
from their individual audio callbacks and sums them up. Additionally, a simple low-pass
filter was implemented using a canonical second-order structure [23], which is applied at
the end of the function. The streams contain 32-bit float values.

If a basic waveform is selected, the respective generator’s audio callback reads from
AudioEngine::getWaveTable(WAVE_FORMS, pitch_t) that returns a band-
limited wavetable based on a given frequency. If a sample is selected, it reads from the
array stored within the block’s Sample object instead. The audio data is converted to
the output’s sample rate and into 32-bit float values upon loading. Sample repitching
is implemented via simple playback speed variation. The array index is determined via
getPhase(), which is implemented as ϕ = ϕ + f

fs
for preset waveforms and as ϕ =

ϕ + f
froot·sample length

for loaded samples, both wrapping around [0.0, 1.0]. The phase is
then multiplied with the respective size of the read array to receive a floating point index.
An interpTable(...) function linearly interpolates values between samples. For
samples, a change of pitch additionally resets the phase to 0.0 to preserve transients.

5.3 Performance Limitations and Bugs

Very late I realised that the main update loop SDL_AppIterate is called at the refresh
rate of the display. This limits the precision of the implemented clock and thus the ac-
curacy of fast sequence stepping. The clock would have to preferably run on a separate
thread to fix this. Moreover, since the main callback structure of SDL3 is inherently mul-
tithreaded, along with the audio callbacks, variable locking is important for avoiding race
conditions. This, however, was not implemented due to concerns of blocking the audio
thread, which leads to occasional crashes.

Lastly, audible artifacts exist for samples played at high frequencies, which exposes
the insufficiency of the implemented filter. A steeper filter structure is needed here.
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6 Conclusion

In comparison to other music software in the generative, polymetric, polyrhythmic and
microtonal music space, gemuPG offers several novel ideas that lead to new composi-
tional approaches. The current state of the software provides a functional foundation and
successfully delivers a natural poly*-centric environment for music creation. However,
the absence of many mentioned features, the implementation of which would allow for
greater musical complexity, hinders the desired big leap in sonic exploration. Future de-
velopment should prioritize integrating these omissions, particularly modulator blocks
and conditional statements, which would allow for more nuanced generative variation.
Furthermore, an overhaul of the ’note’-type sequencer that avoids the twelve-tone scale
as a standard would align more with the microtonal aspect of the design philosophy and
encourage stronger deviation from traditional composition. Altogether, gemuPG can be
seen as a playground for new forms of musical expression with a lot of room for improve-
ment.
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Appendix: Use of AI

The AI Perplexity helped with the initial setup of the toolchain and was used to find defini-
tions of certain concepts. Additionally, GitHub Copilot was active during programming,
but mainly used for quick completion of getter and setter functions, as well as function
parameters.
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