Audio Engineering Society

LESZ Student Project Expo Paper

Presented at the AES 158th Convention
2025 May 22—-24, Warsaw, Poland

This Student Project Expo paper was selected based on a submitted abstract and 750-word precis. This Student Project Expo
paper has been reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review
Board. The AES takes no responsibility for the contents.

gemuPG - A Generative Music Poly* Grid

Aron Rocco Petritz! 2

YUniversity of Music and Performing Arts Graz
2 University of Technology Graz

Correspondence should be addressed to Aron R. Petritz (aronrocco@posteo.net)

ABSTRACT

Conventional music software, like Digital Audio Workstations (DAWSs) and notation tools, adhere to established
rules of traditional Western music composition, which limits creative composition in rhythmic and tonal dimensions.
The new open-source music environment gemuPG aims to explore the capabilities of a software-centric approach
to music making that is not bound to traditional approaches. The design focuses around inherent use of polymeters,
polyrhythms and microtonality. The term poly* is therefore introduced, which groups these concepts together.
Additionally, generative approaches are discussed. A grid based interface rethinks audio tracks as areas on a
two-dimensional grid. Generator blocks can be placed within these areas to create virtual instruments through
additive synthesis. Sequencer blocks are placed on the sides of the areas to create the respective area’s sequence.
The length of each area’s sequence therefore corresponds to its circumference. This structure enables flexible
rhythmic subdivisions and layered temporal patterns across multiple independently behaving areas.

The software was written in C++ using SDL3 and ImGui. Generator blocks support simple wave shapes, as well
as sample loading. Sequencer blocks offer four types that allow for microtonal sequencing. Some features like
chord sequences, effect and modulator blocks, or conditionals are yet to be implemented, but would increase the
two-dimensional design philosophy and especially the generative aspect greatly. Examples nonetheless demonstrate
gemuPG’s unique affordances for minimalist, polymetric, and generative music composition.

1 Introduction does not suit the microtonal aspect semantically, but
encapsulates the concept adequately. Furthermore, I
picked the term generative to describe procedural music.
There are already many examples of music software
referred to as "nonlinear’. Although a lot of this non-
linear software can also be considered poly* and vice
versa, the term poly* differentiates itself by focussing
on forms of more granular pitch and time subdivision
rather than breaking away from linear structural norms.
With gemuPG I desired to create an accessible music
environment that is generative and poly* at its core.
Additionally it should not mimic physical hardware

Traditional music software, such as DAWs and score
editors, is largely constrained by the conventions of
Western music theory: shared measure lengths, rhyth-
mic subdivisions in multiples of two, and equal temper-
ament tuning systems. These structural constraints in-
hibit creative exploration. gemuPG (Generative Music
Poly* Grid) is a new software environment offering
inherently polyrhytmic, polymetric and microtonal ap-
proaches. Here, I suggest poly* (pronounced ’poly
asterisk’, or simply ’poly’) as an umbrella term, which

Petritz

A Generative Music Poly* Grid

interval

12.0 / 12.0

13

0,25 * (x + 0.00)Hz

note

A#HY NG
1

1.00 © (x + 0.00)Hz

relate

-43.93Hz [LEN\[¢]

3

interval

o

5.0 /

relative

12

-102.50Hz

2.00 ° (x + -1.84)Hz]

SINE

Fig. 1: Example area showcasing the sequence order.

but instead offer a software-centric interface, that is
easy to achieve results with. The software is avail-
able under the GNU AGPLv3 license in the git reposi-
tory of the Institute of Electronic Music and Acous-
tics: https://git.iem.at/aronpetritz/
gemupg/—-/releases/Thesis

2 Functionality

For the interface a grid was chosen, which effectively
reimagines audio tracks as two-dimensional areas. Gen-
erator blocks can be placed within these areas to set
up their virtual instrument through additive synthesis.
These generator blocks offer a selection of simple wave
forms or sample loading for sound generation. Addi-
tionally, each block has its own settings window that
can be opened through left-clicking, where the am-
plitude, frequency multiplication factor and relative
frequency change can be set next to the waveform.
Generator blocks can also be placed outside of areas
for continuous notes.

Sequencer blocks are placed around the sides of the ar-
eas, which creates a note sequence that loops at a length
equivalent to the area’s circumference in a counter-
clockwise direction, an example of which is shown

in Figure 1. The following sequencer block types are
available and can also be seen in Figure 2:

e absolute: absolute frequency value

o relative: relative frequency change, based on pre-
vious pitch

e interval: interval as a pair of number of equal
divisions of the octave (edo) and steps of given
edo scale

e note: pitch selection from the twelve-tone scale
(A =440 Hz)

absolute interval | note relative

56.69Hz 2.0 / 5.0 [2 106.44Hz

Fig. 2: Sequencer blocks of all types.

Notably, an area’s frequency wraps around
[20 Hz, 20 kHz|, allowing for semi-permanently
rising or falling loops, an example of which is shown
in Figure 3. An overhaul of the 'note’-type sequencer
that aligns more with the microtonal aspect of the

AES 158th Convention, Warsaw, Poland
2025 May 22-24
Page 2 of 4

Petritz

A Generative Music Poly* Grid

design philosophy is desired. The values of sequencer
and generator blocks are randomised within reasonable
ranges. Importantly, the sides of the areas are checked
rather than its adjacent fields, leading to a sequencer
block placed in an area’s corner being stepped multiple
times successively.

relative

-50.00Hz

interval interval relative

2.0 / 16.0 3.0 / 16.0 200.00Hz

interval relative

2.0 / 16.0 -300.00Hz

relative

25.00Hz

interval interval

3.0/ 16,0 1.0/ 16.0

Fig. 3: A simple generative project.

Areas themselves offer settings windows as well,
shown in Figure 4. In order to support polyrhythmic
patterns a ’subdivision’ setting was added here, which
can rather be seen as a tempo multiplier, in relation to
the global BPM setting. Furthermore, area wide ampli-
tude controls are available, as well as glissando, attack
and release controls, which function in relation to the
area’s sequence step length.

The user interface offers a placement type (area, gener-
ator or sequencer) selection toolbar on the left side, as
well as an indicator showing the current selection in the
corner above. At the bottom of the window is another
toolbar for playback controls. It contains play/pause
and stop buttons, as well as global tempo and volume

Area @ [1, 1]

Fig. 4: The area settings window.

controls. Lastly, an oscilloscope which can be toggled
via a keyboard shortcut is placed in the bottom right
corner. All shortcuts are listed in the appendix. An
empty project window showing the mentioned inter-
face elements can be seen in Figure 5.

Copy and paste functionality for blocks was imple-
mented, which greatly improves placement speed, es-
pecially for sequencer blocks, since it allows for pre-
setting the sequencer type and settings. Lastly, an im-
portant addition was the implementation of save and
load functionality, which allows users to save their
projects in a JSON format for easy sharing and reload-
ing of projects. This ensures that compositions can be
revisited and further developed at any time.

Fig. 5: An empty gemuPG window.

3 Unimplemented Features

Some planned features were omitted, as is made evident
by early concept art seen in Figure 6. Namely, effect
blocks, which would affect areas as a whole, parallel se-
quencer blocks, allowing for chords, and stereo audio
with panning settings for generator blocks. Further-
more, modulator blocks, which could affect variables
of up to four adjacent generator, effect, or other modula-
tor blocks were also considered. These would allow for
frequency or ring modulation synthesis. Additionally,
conditional statements - possibly also implemented in
the form of blocks within areas - could toggle other
blocks or variables based on various factors, such as
the amount of loop iterations passed, the current fre-
quency, or even just based on a random distribution.
Lastly, selectable mute groups for areas and generator
blocks would allow gemuPG to be used as a versatile
live performance instrument.

AES 158th Convention, Warsaw, Poland
2025 May 22-24
Page 3 of 4

A Generative Music Poly* Grid

Petritz
E4
(3 35
77/
2 %
2 F o
4408,
42k

Fig. 6: Early concept art for gemuPG.

4 Instrumental Idioms

Through testing the software during development sev-
eral idioms of became evident. Firstly, polymetric mu-
sic was typically created unless the areas’ circumfer-
ences were intentionally matched. Contrary to this,
the polyrhythmic aspect, being ’hidden’ in a menu,
is perceived as an option rather than a natural occur-
rence. Furthermore, the randomisation of blocks en-
courages quick experimentation and a ’seeing what
sticks’ approach. The looping structure of gemuPG
leads to a strong tendency for repetitive music, even
if not fully repeating due to the underlying polymetric
design. This lends itself to composition of minimal
music, sound scapes and similar forms without strong
musical motion. Alternatively, gemuPG can also be
used as an instrument, rather than a compositional tool,
where the output is recorded and combined with other
tools in a DAW. Most notably however, the central
role of loops limits support for any advanced musical
forms. Although sufficiently large areas that allow for
these forms could be declared, it would directly oppose
gemuPG’s usability, making traditional music software
the better alternative in these cases.

5 Technical Issues

The software was programmed in C++ using SDL3 and
Dear ImGui. Unfortunately, the clock for sequence
stepping is updated in the rendering loop, causing
strong tempo variations on slower machines. Moreover,
various audio glitches are sometimes audible when us-
ing the attack, release and glissando settings. It was

concluded that this also is an issue related to the subop-
timal implementation of the sequencer clock.

6 Summary

gemuPG offers several novel ideas that lead to new
compositional approaches. The current state of the soft-
ware provides a functional foundation and successfully
delivers a natural poly*-centric environment for music
creation. However, the absence of many mentioned
features, the implementation of which would allow for
greater musical complexity, limits generative compo-
sition. Future development should prioritize integrat-
ing these omissions, particularly modulator blocks and
conditional statements, which would allow for more
nuanced generative variation. Altogether, gemuPG can
be seen as a playground for new forms of musical ex-
pression with a lot of room for improvement.

Appendix: Controls

H Shortcut \ Function H

1 | Area Placement
2 | Generator Placement
3 | Sequencer Placement
Left Mouse Click | Place Block
Left Mouse Click | Edit Block
Right Mouse Click | Remove Block
Middle Mouse Drag | Pan Camera
Ctrl + Left Mouse Drag | Pan Camera
Scroll Wheel | Zoom Camera
Ctrl + C | Copy Block
Cul +V | Paste Block
Ctrl + S | Save Project
Ctrl + Shift + S | Save Project As...
Ctrl + O | Open Project
Ctrl + N | New Project
Q | Close All Settings
Escape | Close All Settings
D | Toggle Oscilloscope
F11 | Fullscreen

AES 158th Convention, Warsaw, Poland
2025 May 22-24
Page 4 of 4

